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Abstract 

Non-contact mapping (NCM) offers unique real-time, 
global atrial activation sensing but is limited by reduced 
accuracy >4 mm from the catheter. Alternatives, such as 
basket catheters, face challenges of poor wall contact and 
resolution. Rotor/re-entry mapping has driven interest in 
sequential approaches (e.g., PentaRay, HD-Grid), though 
these assume stable signals, which is problematic in 
atrial fibrillation (AF). Our studies show dominant 
frequency (DF) requires ≥84 s for stability, whereas 
phase singularity (PS) density stabilises within 18 s. 
Using DF-guided ablation with a near-real-time 
interface, AF terminated in 4/10 cases before pulmonary 
vein isolation, with recurrence linked more to stability 
than absolute DF. Machine learning using recurrence 
quantification and wavelet clustering achieved up to 70% 
accuracy in predicting ablation response. Despite 
discontinuation of EnSite arrays, simultaneous 
recordings with PentaRay highlight the potential of 
integrating contact and non-contact mapping with 
machine learning to enhance AF driver identification. 

 
1. Introduction 

Atrial fibrillation (AF)—rapid, irregular atrial 
activation—quintuples stroke risk and doubles heart-
failure risk. In the UK, >1 million people are affected; 
annual NHS costs are ~£1.435 bn, projected to ~£2.351 
bn by 2030. Much of this burden reflects repeat 
admissions after catheter ablation (CA): with current 
technology, only ~50% of persistent AF (persAF) patients 
are arrhythmia-free 12 months after first CA. AF requires 
a trigger and a sustaining substrate; pulmonary-vein 
isolation (PVI) treats paroxysmal AF, but poor persAF 
outcomes imply extra-PV drivers [1, 2]. Atrial regions 
with complex fractionated atrial electrograms (CFAEs) 
were reported to represent relevant AF substrate and 

target sites for AF ablation [3], but the STAR-AF 2 trial 
showed that additional ablation of a sequential marker 
failed to improve the outcome, compared to PVI alone 
[4]. Ablation targeting focal impulse and rotor 
modulation (FIRM) initially showed high termination 
rate, but other groups failed to reproduce these results. 
These techniques were implemented in commercial 
systems considering single markers, but this has proven 
insufficient [4, 5] with resultant disappointing clinical 
outcome in terms of AF recurrence (CONFIRM). 
Multiple mechanisms may co-exist during persAF [6, 7]. 
Single processing technique is unlikely to capture all 
drivers. Precise target identification therefore demands 
detailed tissue characterisation and patient-specific 
strategies, with modern data-driven methods increasingly 
outperforming rule-based approaches. 

 
2. USURP-AF Database and Outcomes - 
DF Ablation in persAF 

Ten persAF patients undergoing first time LA catheter 
ablation were enrolled. Bi-atrial noncontact multi-
electrode arrays (EnSite, St. Jude Medical, St. Paul, MN, 
USA) were inserted in LA. ECG and Virtual Electrogram 
(VEGM) data were collected simultaneously for 5 
minutes before ablation. High DF regions in the LA were 
identified as described before[8, 9] and 30s (from 5 min 
recording) of unipolar LA VEGMs (2048-
channels[nodes]) were exported to our Matlab 
platform[10, 11] to guide ablation targeting. Cycle 
lengths before and after ablating each atrial DF site were 
recorded. We consider AF cycle length (AFCL) 
increase>10ms and AF termination as positive ablation 
result. There were no adverse events in all ten patients. A 
total of 51 atrial locations [3,206nodes] were ablated: 16 
with AFCL increase [1,182nodes], 4 terminated AF 
[308nodes], 7 AFCL decrease [381nodes] and 24 no 
AFCL change [1,335nodes]. Three patients had ablation 
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terminations to atrial flutter or tachycardia before PVI, 
one ablation to LA silence and subsequent spontaneous 
SR pre-PVI and one conversion to SR with flecainide 
alone post-PVI.  

 
 
Figure 1. The workflow of using the USURP-GUI 
platform to guide catheter ablation 

 
3. Feature Based Approaches  

3.1. What We Learnt from DF Guided 
Ablation 

Bar plots show mean ± standard deviation (SD) for 
each feature by class; pairwise p-values are reported in 
Table 1. Mean DF (Hz) for the four classes were 4.94 ± 
0.23, 5.38 ± 0.67, 5.48 ± 0.71, and 5.33 ± 0.69 (overall 
p<0.0001p < 0.0001p<0.0001). Temporal DF SDs were 
0.39 ± 0.11, 0.69 ± 0.28, 0.64 ± 0.23, and 0.75 ± 0.29 
(overall p<0.0001p < 0.0001p<0.0001). Mean OIs were 
0.39 ± 0.30, 0.35 ± 0.06, 0.35 ± 0.05, and 0.32 ± 0.05 
(overall p<0.0001p < 0.0001p<0.0001). Temporal OI SDs 
were 0.11 ± 0.01, 0.10 ± 0.02, 0.10 ± 0.02, and 0.09 ± 
0.01 (overall p<0.0001p < 0.0001p<0.0001). Notably, 

most features in the AF-termination class differed 
significantly from the other classes, indicating phenotypic 
distinctiveness of termination sites; increasing the number 
of termination cases may further improve classifier 
performance on future data. 

 

 
Figure 2. The bar graphs of the 4 features for each class. 
 

Across ablation outcomes, AF termination and  AFCL 
prolongation were not associated with the highest 
dominant frequency (DF) per se, but consistently required 
relatively high organization index (OI). Subsequent 
temporal analyses showed that periods with temporally 
stable DF tended to co-occur with high OI. Taken 
together, sites exhibiting moderately elevated DF together 
with high OI appear enriched for termination 
mechanisms.  

 
3.2. DF and Recurrent DF 

We subsequently observed that recurrent DF (rDF)—
i.e., the repeated re-emergence of similar DF values over 
time—is associated with higher organisation index (OI) 
and moderately elevated (rather than maximal) DF. This 
composite phenotype (rDF + high OI + moderate DF) 
appears more closely linked to atrial regions relevant for 

Figure 3. End-to-end pipeline for data-driven AF target identification. 
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AF modification than instantaneous DF alone. 
Using global mapping during persAF, we showed that 

DF lacks spatiotemporal stability[12], suggesting 
limitations in previous studies using sequential DF 
mapping[13].  Cyclical behaviours of high DF (HDF) 
reappearance in the LA[8], and  recurrent behaviour of 
DF in longer EGM duration (5 mins)[14] have been 
demonstrated by our group, which suggest that electrical 
activity of AF is not entirely random. Preliminary data 
suggest that recurrent HDF pattern regions were observed 
to have higher organization [14], which was also 
supported in recent work investigating temporally stable 
DF[15]. There is, therefore, a need to investigate whether 
these recurrent, more organised atrial regions are more 
correlated with the underlying AF drivers as potential 
targets for ablation.  

However, machine-learning models built on DF and OI 
(including area-averaged OI, aOI) alone did not 
generalize well to our unpublished hold-out cohort, 
suggesting additional features are required for robust 
prediction. 

 
3.3. Rotor and Rotor Duration 

   Rotors (spiral waves) have been observed during atrial 
arrhythmia and are implicated as localized drivers of 
fibrillation. Phase mapping is widely used to identify 
rotor/phase-singularity (PS) sites, yet results can conflict 
(e.g., FIRM) and remain sensitive to algorithmic choices 
(search radius, phase-gradient thresholds) and pre-
processing filters. In head-to-head testing of three 
automated rotor-tracking pipelines, we found PS 
detection to be method-dependent [16], and established 
that robust PS-density (PSD) estimation requires ≥18 s of 
data. Notably, DF and PS sites frequently co-localize [9]. 
Going forward, we will incorporate rotor-derived features 
(e.g., PSD, rotor dwell/recurrence) alongside organization 
metrics to improve targeting of AF-modifying regions. 
 
4. Machine Learning and Data Driven 
Approaches 

    After domain-driven features (e.g., DF, aOI) failed to 
generalize for AF substrate targeting, we pivoted to a 
data-driven strategy with minimal prior assumptions. 
Rather than prespecifying electrophysiological markers, 
we let the recordings themselves determine salient 
spatiotemporal patterns, including recurrent/stable 
behaviours, and assess their association with AF 
modification and termination. Our aim, consistent with 
AI-for-Science, is to extract reproducible, mechanistically 
plausible signals from the data. 

 
4.1. Time Series Features  

We extracted 390 features per electrogram (EGM) across 
three domains—spectral, temporal, and statistical—using 
the TSFEL Python library. Records were labeled as (i) 
positive if ablation resulted in AF termination or AF-
cycle-length (AFCL) prolongation ≥10 ms, and (ii) 
negative/neutral if AFCL change was <10 ms or absent. 
Among all features, the FFT mean coefficient at 10 Hz 
was most discriminative; a univariate model using this 
feature achieved 71.74% accuracy (10-fold cross-
validation). We identified spectral power at ~10 Hz (near 
the upper end of the atrial DF band) as a strong univariate 
marker for AF termination and AFCL prolongation[17]. 

4.2. Recurrence Quantification Analysis 
Features 

We evaluated supervised learning using non-linear RQA 
descriptors from short electrogram segments (~3 s) to 
predict acute ablation outcome. Under an inter-patient 
split (leave-one-patient-out cross-validation), the RQA 
feature set achieved 74% accuracy. Feature-importance 
analysis consistently highlighted measures as most 
informative—determinism (DET) and length of the 
longest diagonal line. 

4.3. Wavelet Scattering Coefficient 
Features  

Wavelet-scattering features, reduced via principal 
component analysis and fed to a supervised classifier, 
predicted ablation outcome from 18-s segments with 79% 
accuracy. This compact pipeline is a promising direction 
for outcome prediction. 

 
4.4. Deep Learning Approaches  

We evaluated image-based deep learning using 
ResNet-50 (spectrograms and recurrence plots), an 
autoencoder, and transfer learning from ImageNet. Under 
inter-patient splits (leave-one-patient-out, 10-fold CV), 
transfer learning with ResNet-50 on spectrograms 
achieved 62% accuracy; an autoencoder followed by a 
decision-tree classifier achieved 63%. All results use 
patient-wise partitions to avoid leakage and provide 
reproducible baselines. 

 
5. Conclusion 

Simultaneous/global mapping remains valuable for AF 
driver identification, despite known distance-related 
limitations, because it uniquely captures chamber-wide 
dynamics in real time.  Across analyses, DF alone was 
insufficient: termination/AFCL prolongation clustered at 
sites showing moderate DF with high organisation and 
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recurrence. Feature-based pipelines outperformed deep 
nets: TSFEL features identified a 10 Hz spectral marker 
(71.74%), RQA features from ~3 s segments reached 
74%. With a small dataset, feature-based pipelines 
outperform deep learning—e.g., wavelet-scattering+PCA 
achieved 79% vs ResNet-50 transfer/autoencoder 62–
63% (patient-wise CV).  These results support a data-
driven, hypothesis-light strategy that integrates 
recurrence/stability, organisation, and rotor-derived 
features, with rigorous leakage controls. Future work will 
expand cohorts, perform multi-centre external validation, 
and translate the pipeline to contact-mapping platforms 
using our paired non-contact/contact recordings to bridge 
modalities and enable prospective testing. 
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