Simultaneous Atrial Mapping: End of an Era or Promising Future? Insights from
Non-contact Mapping Integrated with Frequency, Phase, and Machine Learning
Approaches to Identify Drivers from Clinical Data

Xin Li', Noor Qaqos!, Ekenedirichukwu N Obianom!, Shamsu Idris Abdullahi!, Abdulhamed M
Jasim!, Fan Feng!, Abdulmalik Koya', Ahmed M Abdelrazik'?>, Mahmoud, Eldesouky'?, Gavin S
Chu!?, Fernando S Schlindwein, G André Ng!-?

! University of Leicester, Leicester, United Kingdom
2University Hospitals of Leicester NHS Trust, Leicester, United Kingdom

Abstract

Non-contact mapping (NCM) offers unique real-time,
global atrial activation sensing but is limited by reduced
accuracy >4 mm from the catheter. Alternatives, such as
basket catheters, face challenges of poor wall contact and
resolution. Rotor/re-entry mapping has driven interest in
sequential approaches (e.g., PentaRay, HD-Grid), though
these assume stable signals, which is problematic in
atrial fibrillation (AF). Our studies show dominant
frequency (DF) requires >84 s for stability, whereas
phase singularity (PS) density stabilises within 18 s.
Using DF-guided ablation with a near-real-time
interface, AF terminated in 4/10 cases before pulmonary
vein isolation, with recurrence linked more to stability
than absolute DF. Machine learning using recurrence
quantification and wavelet clustering achieved up to 70%
accuracy in predicting ablation response. Despite
discontinuation  of  EnSite arrays, simultaneous
recordings with PentaRay highlight the potential of
integrating contact and non-contact mapping with
machine learning to enhance AF driver identification.

1. Introduction

Atrial fibrillation (AF)—rapid, irregular atrial
activation—quintuples stroke risk and doubles heart-
failure risk. In the UK, >1 million people are affected;
annual NHS costs are ~£1.435 bn, projected to ~£2.351
bn by 2030. Much of this burden reflects repeat
admissions after catheter ablation (CA): with current
technology, only ~50% of persistent AF (persAF) patients
are arrhythmia-free 12 months after first CA. AF requires
a trigger and a sustaining substrate; pulmonary-vein
isolation (PVI) treats paroxysmal AF, but poor persAF
outcomes imply extra-PV drivers [1, 2]. Atrial regions
with complex fractionated atrial electrograms (CFAEs)
were reported to represent relevant AF substrate and
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target sites for AF ablation [3], but the STAR-AF 2 trial
showed that additional ablation of a sequential marker
failed to improve the outcome, compared to PVI alone
[4]. Ablation targeting focal impulse and rotor
modulation (FIRM) initially showed high termination
rate, but other groups failed to reproduce these results.
These techniques were implemented in commercial
systems considering single markers, but this has proven
insufficient [4, 5] with resultant disappointing clinical
outcome in terms of AF recurrence (CONFIRM).
Multiple mechanisms may co-exist during persAF [6, 7].
Single processing technique is unlikely to capture all
drivers. Precise target identification therefore demands
detailed tissue characterisation and patient-specific
strategies, with modern data-driven methods increasingly
outperforming rule-based approaches.

2. USURP-AF Database and Outcomes -
DF Ablation in persAF

Ten persAF patients undergoing first time LA catheter
ablation were enrolled. Bi-atrial noncontact multi-
electrode arrays (EnSite, St. Jude Medical, St. Paul, MN,
USA) were inserted in LA. ECG and Virtual Electrogram
(VEGM) data were collected simultaneously for 5
minutes before ablation. High DF regions in the LA were
identified as described before[8, 9] and 30s (from 5 min
recording) of unipolar LA  VEGMs (2048-
channels[nodes]) were exported to our Matlab
platform[10, 11] to guide ablation targeting. Cycle
lengths before and after ablating each atrial DF site were
recorded. We consider AF cycle length (AFCL)
increase>10ms and AF termination as positive ablation
result. There were no adverse events in all ten patients. A
total of 51 atrial locations [3,206nodes] were ablated: 16
with AFCL increase [1,182nodes], 4 terminated AF
[308nodes], 7 AFCL decrease [381nodes] and 24 no
AFCL change [1,335nodes]. Three patients had ablation
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terminations to atrial flutter or tachycardia before PVI,

one ablation to LA silence and subsequent spontancous

SR pre-PVI and one conversion to SR with flecainide

alone post-PVI.
Ensite Array

Ensite Velocity USURP-GUI

Catheter Mapping system in Matlab

(c) USURP-GUI screen
Viewed by the cardiologist
performing ablation

(d) Radiofrequency Ablation
Guided by USURP-GUI

Figure 1. The workflow of using the USURP-GUI
platform to guide catheter ablation

3. Feature Based Approaches

3.1. What We Learnt from DF Guided
Ablation

Bar plots show mean + standard deviation (SD) for
each feature by class; pairwise p-values are reported in
Table 1. Mean DF (Hz) for the four classes were 4.94 +
0.23, 5.38 £ 0.67, 5.48 + 0.71, and 5.33 £ 0.69 (overall
p<0.0001p < 0.0001p<0.0001). Temporal DF SDs were
0.39 + 0.11, 0.69 + 0.28, 0.64 + 0.23, and 0.75 + 0.29
(overall p<0.0001p < 0.0001p<0.0001). Mean Ols were
0.39 + 0.30, 0.35 + 0.06, 0.35 + 0.05, and 0.32 + 0.05
(overall p<0.0001p < 0.0001p<0.0001). Temporal OI SDs
were 0.11 = 0.01, 0.10 + 0.02, 0.10 + 0.02, and 0.09 +
0.01 (overall p<0.0001p < 0.0001p<0.0001). Notably,
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most features in the AF-termination class differed
significantly from the other classes, indicating phenotypic
distinctiveness of termination sites; increasing the number
of termination cases may further improve classifier
performance on future data.
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Figure 2. The bar graphs of the 4 features for each class.

Across ablation outcomes, AF termination and AFCL
prolongation were not associated with the highest
dominant frequency (DF) per se, but consistently required
relatively high organization index (OI). Subsequent
temporal analyses showed that periods with temporally
stable DF tended to co-occur with high OI. Taken
together, sites exhibiting moderately elevated DF together
with high OI appear enriched for termination
mechanisms.

3.2. DF and Recurrent DF

We subsequently observed that recurrent DF (rDF)—
i.e., the repeated re-emergence of similar DF values over
time—is associated with higher organisation index (OI)
and moderately elevated (rather than maximal) DF. This
composite phenotype (rDF + high OI + moderate DF)
appears more closely linked to atrial regions relevant for
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Figure 3. End-to-end pipeline for data-driven AF target identification.
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AF modification than instantaneous DF alone.

Using global mapping during persAF, we showed that
DF lacks spatiotemporal stability[12], suggesting
limitations in previous studies using sequential DF
mapping[13]. Cyclical behaviours of high DF (HDF)
reappearance in the LA[8], and recurrent behaviour of
DF in longer EGM duration (5 mins)[14] have been
demonstrated by our group, which suggest that electrical
activity of AF is not entirely random. Preliminary data
suggest that recurrent HDF pattern regions were observed
to have higher organization [14], which was also
supported in recent work investigating temporally stable
DF[15]. There is, therefore, a need to investigate whether
these recurrent, more organised atrial regions are more
correlated with the underlying AF drivers as potential
targets for ablation.

However, machine-learning models built on DF and OI
(including area-averaged OI, aOl) alone did not
generalize well to our unpublished hold-out cohort,
suggesting additional features are required for robust
prediction.

3.3. Rotor and Rotor Duration

Rotors (spiral waves) have been observed during atrial
arrhythmia and are implicated as localized drivers of
fibrillation. Phase mapping is widely used to identify
rotor/phase-singularity (PS) sites, yet results can conflict
(e.g., FIRM) and remain sensitive to algorithmic choices
(search radius, phase-gradient thresholds) and pre-
processing filters. In head-to-head testing of three
automated rotor-tracking pipelines, we found PS
detection to be method-dependent [16], and established
that robust PS-density (PSD) estimation requires >18 s of
data. Notably, DF and PS sites frequently co-localize [9].
Going forward, we will incorporate rotor-derived features
(e.g., PSD, rotor dwell/recurrence) alongside organization
metrics to improve targeting of AF-modifying regions.

4. Machine Learning and Data Driven
Approaches

After domain-driven features (e.g., DF, aOl) failed to
generalize for AF substrate targeting, we pivoted to a
data-driven strategy with minimal prior assumptions.
Rather than prespecifying electrophysiological markers,
we let the recordings themselves determine salient
spatiotemporal  patterns, including recurrent/stable
behaviours, and assess their association with AF
modification and termination. Qur aim, consistent with
Al-for-Science, is to extract reproducible, mechanistically
plausible signals from the data.

4.1. Time Series Features

We extracted 390 features per electrogram (EGM) across
three domains—spectral, temporal, and statistical—using
the TSFEL Python library. Records were labeled as (i)
positive if ablation resulted in AF termination or AF-
cycle-length (AFCL) prolongation >10 ms, and (ii)
negative/neutral if AFCL change was <10 ms or absent.
Among all features, the FFT mean coefficient at 10 Hz
was most discriminative; a univariate model using this
feature achieved 71.74% accuracy (10-fold cross-
validation). We identified spectral power at ~10 Hz (near
the upper end of the atrial DF band) as a strong univariate
marker for AF termination and AFCL prolongation[17].

4.2. Recurrence Quantification Analysis
Features

We evaluated supervised learning using non-linear RQA
descriptors from short electrogram segments (~3 s) to
predict acute ablation outcome. Under an inter-patient
split (leave-one-patient-out cross-validation), the RQA
feature set achieved 74% accuracy. Feature-importance
analysis consistently highlighted measures as most
informative—determinism (DET) and length of the
longest diagonal line.

4.3. Wavelet
Features

Scattering Coefficient

Wavelet-scattering features, reduced via principal
component analysis and fed to a supervised classifier,
predicted ablation outcome from 18-s segments with 79%
accuracy. This compact pipeline is a promising direction
for outcome prediction.

4.4. Deep Learning Approaches

We evaluated image-based deep learning using
ResNet-50 (spectrograms and recurrence plots), an
autoencoder, and transfer learning from ImageNet. Under
inter-patient splits (leave-one-patient-out, 10-fold CV),
transfer learning with ResNet-50 on spectrograms
achieved 62% accuracy; an autoencoder followed by a
decision-tree classifier achieved 63%. All results use
patient-wise partitions to avoid leakage and provide
reproducible baselines.

5. Conclusion

Simultaneous/global mapping remains valuable for AF
driver identification, despite known distance-related
limitations, because it uniquely captures chamber-wide
dynamics in real time. Across analyses, DF alone was
insufficient: termination/AFCL prolongation clustered at
sites showing moderate DF with high organisation and
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recurrence. Feature-based pipelines outperformed deep
nets: TSFEL features identified a 10 Hz spectral marker
(71.74%), RQA features from ~3 s segments reached
74%. With a small dataset, feature-based pipelines
outperform deep learning—e.g., wavelet-scattering+PCA
achieved 79% vs ResNet-50 transfer/autoencoder 62—
63% (patient-wise CV). These results support a data-
driven, hypothesis-light  strategy that integrates
recurrence/stability, organisation, and rotor-derived
features, with rigorous leakage controls. Future work will
expand cohorts, perform multi-centre external validation,
and translate the pipeline to contact-mapping platforms
using our paired non-contact/contact recordings to bridge
modalities and enable prospective testing.
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